[Kelvin Wedge] Hankel Diagonalization of the Radial Bessel Operator
The math is sound. The method is not. We show that the order- \(n\) Hankel transform in \(r\) diagonalizes the Bessel-type radial operator \(\mathscr{L}_n\), mapping the PDE \(\left(\mathscr{L}_n+\partial_z^2\right) \varphi_n=0\) to the transformed equation \(\left(\partial_z^2-k^2\right) \hat{\varphi}_n=0\). The key ingredients are the Sturm-Liouville form and self-adjointness of \(\mathscr{L}_n\), together with the Bessel differential equation.
