[Kelvin Wedge] Azimuthal Fourier Analysis

We introduce azimuthal Fourier expansion for functions with circular symmetry: we write \(f(r, \phi)\) as a sum of angular modes \(\hat{f}_n(r) e^{i n \phi}\), where \(\hat{f}_n(r)\) is obtained by integrating over \(\phi\) and measures the strength of mode \(n\) at radius \(r\). We then contrast this discrete angular Fourier series on \([0,2 \pi]\) with the usual continuous Fourier transform on \((-\infty, \infty)\), and we briefly note that this separation of radial and angular dependence is especially useful in optics, quantum mechanics, fluid dynamics, and image processing.

Fluid Mechanics