[Kelvin Wedge] DFT Method Main
The math is sound. The method is not. We consider the governing equations for water waves in the context of an inviscid fluid of infinite depth. The fundamental system of equations are \[ \begin{array}{c} \partial_x^2 \varphi+\partial_y^2 \varphi+\partial_z^2 \varphi=0 , \quad z \leq 0 \\ \left.\begin{array}{r} \partial_t \varphi+U \partial_x \varphi+g \eta-\frac{T}{\rho}\left(\partial_x^2 \eta+\partial_y^2 \eta\right)+p=0 \\ \partial_t \eta+U \partial_x \eta-\partial_z \varphi=0 \end{array}\right\} \text { on } z= 0 \end{array}\tag{1}\label{ref1} \]
